Sabtu, 11 Oktober 2014

TEORI ALJABAR BOOLEAN



Aljabar Boolean 

Aljabar Boolean memuat variable dan simbul operasi untuk gerbang logika. Simbol yang digunakan pada aljabar Boolean adalah: (.) untuk AND, (+) untuk OR, dan ( ) untuk NOT. Rangkaian logika merupakan gabungan beberapa gerbang, untuk mempermudah penyeleseian perhitungan secara aljabar dan pengisian tabel kebenaran digunakan sifat-sifat aljabar Boolean
Dalam aljabar boolean digunakan 2 konstanta yaitu logika 0 dan logika 1. ketika logika tersebut diimplementasikan kedalam rangkaian logika maka logika tersebut akan bertaraf sebuah tegangan. kalau logika 0 bertaraf tegangan rendah (aktive low) sedangkan kalau logika 1 bertaraf tegangan tinggi (aktive high). pada teori – teori aljabar boolean ini berdasarkan aturan – aturan dasar hubungan antara variabel – variabel boolean.

Dalil-dalil Boolean (Boolean postulates)

P1: X= 0 atau X=1
P2: 0 . 0 = 0
P3: 1 + 1 = 1
P4: 0 + 0 = 0
P5: 1 . 1 = 1
P6: 1 . 0 = 0 . 1 = 0
P7: 1 + 0 = 0 + 1 = 1

Theorema Aljabar Boolean
  1. T1: Commutative Law
    a. A + B = B + A
    b. A . B = B . A
  2. T2: Associative Law
    a. ( A + B ) + C = A + ( B + C )
    b. ( A . B ) . C = A . ( B . C )
  3. T3: Distributive Law
    a. A . ( B + C ) = A . B + A . C
    b. A + ( B . C ) = ( A + B ) . ( A + C )
  4. T4: Identity Law
    a. A + A = A
    b. A . A = A
  5. T5: Negation Law
    1. ( A’ ) = A’
    2. ( A’ )’ = A
  6. T6: Redundant Law
    a. A + A . B = A
    b. A . ( A + B ) = A
  7. T7: 0 + A = A
    1 . A = A
    1 + A = 1
    0 . A = 0
  8. T8: A’ + A = 1
    A’ . A = 0
  9. T9: A + A’ . B = A + B A . ( A’ + B ) = A . B
  10. T10: De Morgan’s Theorem
    a. (A+B)’ = A’ . B’
    b. (A . B)’= A’ + B’

Contoh Soal :

1. X + X’ .Y = (X + X’).(X +Y) = X+Y
2. X .(X’+Y) = X.X’ + X.Y = X.Y
3. X.Y+ X’.Z+Y.Z = X.Y + X’.Z + Y.Z.(X+X)’
= X.Y + X’.Z + X.Y.Z + X’.Y.Z
= X.Y.(1+Z) + X’.Z.(1+Y)
= X.Y + X’.Z


Tidak ada komentar:

Posting Komentar